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Abstract. Nowadays the studies on the formalization, enforcement, and monitoring of policies and norms is crucial in different
fields of research and in numerous applications. ODRL 2.2 (Open Digital Right Language) is a W3C standard policy expression
language formalized using semantic web technologies. It is used to represent permitted and prohibited actions over a certain
asset, and obligations required to be met by parties involved in the exchange of a digital asset. In this paper, we propose to
extend the model of obligation, permission, and prohibition proposed by ODRL 2.2 in two directions. Firstly, by inserting in
the model the notion of activation event (or action) and by expressing event and action as complex constructs having types and
application-independent properties. Secondly, by considering the temporal aspects of obligations, permissions, and prohibitions
(e.g. expiration dates and deadlines) as part of their application independent model. These extensions are necessary in order to
be able to propose an application-independent operational semantics of the extended model, which is formalized using State Ma-
chines and is computed by a specific production rule system. The proposed approach has been tested by developing a framework
in Java able to get as input a set of policies formalized using Semantic Web languages, and to compute their evolution in time
based on the events and actions that happen in the interaction among the parties involved in the specified policies.

Keywords: Norms, Policies, Obligations, Prohibitions, Permissions, Multiagent Systems, Semantic Web Technologies,
Production Rules

1. Introduction

Nowadays the study of policies and norms is crucial
in different fields of research and applications. Policies
may be applied for regulating access to data and dig-
ital assets in policy-based access control frameworks.
They may be employed to specify licenses for usage of
software, images, video and data or to formalize con-
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tracts, agreements, and offers between different parties
in e-commerce applications. Privacy policy may also
be used to express regulations on the management of
personal and sensitive data.

Policies and norms can be expressed using human-
readable formats. However, it is necessary to specify
them with formal and machine-readable languages in
order to enable machine-to-machine interactions en-
riched with a number of useful services. Examples of
services are: (i) advanced search of resources based on
the actions that it is possible to perform on them; (ii)
aggregation of different resources released under dif-
ferent policies by computing policies compatibility or
conflicts; (iii) monitoring the satisfaction or violation
of the normative relations that an intensive exchange of
digital assets creates in the chain of interactions among
data producers, data publishers, and data consumers;
(iv) simulating the evolution of a set of policies on the

0921-7126/19/$35.00 c© 2019 – IOS Press and the authors. All rights reserved

http://dx.doi.org/10.3233/AIC-190617
http://dx.doi.org/10.3233/AIC-190617
mailto:nicoletta.fornara@usi.ch


2 N. Fornara et al. / Reasoning on Obligations, Permissions, and Prohibitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

basis of an hypothetical set of events and actions in or-
der to perform for example a what-if analysis. In order
to realize the last two services, it is crucial not only to
propose a language for expressing policies, but also to
unambiguously specify what it means for an agent to
have a set of specific policies.

ODRL 2.2 (Open Digital Right Language)4 is a
W3C standard policy expression language, which is
used to represent permitted and prohibited actions over
a certain asset, and obligations required to be met by
the parties involved in the exchange of a digital as-
set. Originally, in 2001, ODRL was an XML language
for expressing digital rights, that is, digital content us-
age terms and conditions. In 2012 (version 2.0) and in
2015 (version 2.1) [1], ODRL evolved into a more gen-
eral policy language: it is no longer focused only on
the formalization of rights expressions, but also on the
specification of privacy statements, like duties, permis-
sions, and prohibitions. ORDL started to be formalized
in RDF with an abstract model specified by an RDF
Schema Ontology. In March 2016, a W3C Working
Group was created with the goal of bringing the spec-
ifications through the W3C Process to “Recommenda-
tion” status. ODRL 2.2 became a W3C Recommen-
dation on 15th February 2018. In all the specifications
of ODRL, its semantics is described informally in En-
glish, and no formal specification is provided. In liter-
ature there is a paper [2] where an OWL representation
of ODRL 1.1 is presented, but the use of OWL is lim-
ited to the static representation of policies, and there is
not a specification of their dynamic semantics, that is,
of how they evolve in time. In another paper, [3], the
semantics of ODRL 2.1 policies, used in the field of
access control, is investigated. The focus of this paper
is on explicit and implicit dependencies among the reg-
ulated actions. In particular, when a request to perform
an action on an asset is issued, the system evaluates
which rules (prohibition, permission, or duty rules) are
triggered, then it checks whether these rules hold based
on certain constraints, but there is no hint on how the
satisfaction of such constraints can be computed.

In this paper, we propose to extend the model of per-
mission, duty, and obligation proposed by ODRL 2.2 in
two directions. Firstly, by inserting in the model the no-
tion of activation event/action and by expressing event
and action as complex constructs having types and
application-independent properties. Secondly, by con-
sidering the temporal aspects of obligations and per-
missions (their expiration dates and the deadlines) as

4https://www.w3.org/TR/odrl-model/

part of their application-independent model. Then, we
propose to formalize the operational semantics of the
extended model of obligations, permissions, and pro-
hibitions by using State Machines, which are used to
unambiguously specify the temporal evolution of their
deontic state while time passes and relevant events
(e.g. the elapsing of a deadline) or actions (e.g. down-
loading a music file) happen. Such an operational se-
mantics can be efficiently computed by a monitor com-
ponent by using a production rule system. The pro-
posed approach has been tested by developing a frame-
work in Java able to get as input a set of policies for-
malized using Semantic Web languages, and to com-
pute their evolution in time based on the events and ac-
tions that take place. Such a framework uses the for-
ward chaining rule-based RETE engine of the Apache
Jena framework5 (which is compatible with semantic
web languages) for realizing the production system.

The paper is organized as follows. In Section 2, a se-
mantic meta-model for expressing temporal and condi-
tional obligations, permissions, and prohibitions is in-
troduced. In Section 3, the life cycles of those deontic
relations is formally specified. In Section 4, a produc-
tion rule system is used for computing the deontic state
of obligations, permissions, and prohibitions. In Sec-
tion 5, a prototype for simulating the evolution in time
of deontic relations is described. Finally, in Section 6
other approaches for expressing policies and norms are
presented and discussed.

2. A Semantic Web Meta-model of Conditional
Obligations, Permissions, and Prohibitions

Given that ODRL is a W3C standard, the ODRL 2.2
Information Model6 is specified as an RDF Ontology
formalized using RDF Schema7, a semantic web stan-
dard language for expressing data-model vocabulary
for RDF data. RDF Schema can be used for defining
classes, domain and range of properties and hierarchies
of classes and of properties. The provided ODRL spec-
ification is compatible with another standard seman-
tic web language for expressing ontologies, the OWL
2 Web Ontology Language, which is a practical seri-
alization of the SROIQ(D) Description Logic. There-
fore, given that we want to propose an extension of
ODRL, we will formalize our normative meta-model

5https://jena.apache.org/documentation/inference/index.html
6https://www.w3.org/ns/odrl/2/
7https://www.w3.org/TR/rdf-schema/

https://www.w3.org/TR/odrl-model/
https://jena.apache.org/documentation/inference/index.html
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using an OWL ontology: the Normative Language On-
tology (NL Ontology). This choice involves the advan-
tage of being able to perform automatic reasoning on
the OWL formalization of the proposed deontic con-
cepts and the chance, given by the adoption of Seman-
tic Web Languages, to connect our ontology with other,
quite well known, OWL and RDF ontologies.

Coherently with the ODRL 2.2 Information Model8,
in our model a policy must have at least one per-
mission, prohibition or obligation. In ODRL the Per-
mission, Prohibition, and Duty classes are subclass of
the Rule class, which is used as domain of the com-
mon properties of these three classes. In this paper,
we will introduce a different formalization of the no-
tion of obligation, prohibition, and permission. In or-
der to extend the ODRL model in this direction, we
introduce in our Normative Language Ontology three
new classes: the Permission, Prohibition, and Obliga-
tion classes. Given that every obligation, prohibition, or
permission is a deontic relation, those three classes are
subclass of the DeonRelation class, which is a subclass
of the ODRL Rule class.

There are three main differences between ODRL
model of deontic concepts and the one proposed in
this paper. The first one is that in ODRL model the
regulated actions are expressed by means of their tex-
tual name (e.g. “print”), and their semantics can be
narrowed by using constraints (i.e. expressions which
compare two operands). For example it is possible to
express the permission to print less than or equal to
1200 dpi resolution9. We think that the characteris-
tics of the regulated actions have not simply to be ex-
pressed using some generic constraints, but they must
be expressed using an application-independent model
of those actions. Therefore, we propose to specify the
regulated actions using complex constructs having a
type (i.e. a class) and a set properties shared as much
as possible with de facto standard used for describing
actions in the Web.

The other differences are due to the fact that the
ODRL model does not put in evidence two funda-
mental application-independent aspects of deontic re-
lations. The first aspect is the important role played by
the activation condition [4–6], i.e. the event or action
that can activate an obligation, put in force a prohibi-
tion, or make valid a conditional permit. Think for ex-
ample to the obligation to pay a ticket that becomes ac-
tive when someone enters a limited traffic area, or to

8https://www.w3.org/TR/odrl-model/#infoModel
9The ODRL 2.2 formalization of this permission is available at

https://www.w3.org/TR/odrl-model/#constraint-action

the permit to play a music file during a party that be-
comes valid only after a fee is paid. In ODRL, an ac-
tivation condition may be represented using a generic
constraint or a duty (only for permissions), but this
choice does not highlight a crucial component in the
model of a deontic relation, which is fundamental for
the operational semantics discussed in the next section.
Moreover, the ODRL proposal to constrain a permis-
sion using a duty, where the duty is a pre-condition that
must be fulfilled to obtain a valid permission, is rather
unnatural because a duty is an action than an agent is
obligated to do, not an action that an agent can freely
decide to perform.

The other application-independent characteristic of
the modelled deontic concepts, which has important
implications on the operational semantics proposed in
this paper, is the relation between those deontic con-
cepts and time. Usually an obligatory action has to
be performed before a specific deadline, a prohibition
may have a termination instant of time, and a permis-
sion can be used within a certain interval of time. For
example, an agent may have the obligation to pay 5
euro before the end of the month, or the permission
to play a music file for one week. Moreover, a condi-
tional deontic relation may become expired (it ceases
to exist) if it is not activated before a given expiration
date. For example, when an auction is open, every par-
ticipant is obliged to pay for her/his bids in case s/he
becomes the winner of the auction, when an auction is
closed, such an obligation expires and cannot become
active anymore.

Taking into account all these considerations, in our
meta-model a deontic relation is defined, using a tuple
notation, as follows:

Definition 1 (Deontic relation) A deontic relation is a
tuple: 〈type, debtor, creditor, activation condition,
content, deadline, expiration date, counter〉 where:

• type is used for distinguishing between an obliga-
tion, a prohibition, or a permission;

• debtor and the creditor are the two parties in-
volved in the deontic relation. The debtor of an
obligation is the agent who has to execute the ac-
tion described in the content, and the creditor is
the agent to whom the execution is owed. The
debtor of a prohibition is the agent who has not to
execute the action described in the content and the
creditor is the agent who is wronged by the execu-
tion of the action. The debtor and the creditor of
a permission used for derogating to a prohibition
are respectively the creditor and the debtor of the
prohibition.

https://www.w3.org/TR/odrl-model/#infoModel
https://www.w3.org/TR/odrl-model/#constraint-action
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• activation condition is the description of the class
of activating events and content is the description
of the class of regulated actions. Those classes of
events or actions are described by specifying their
type (e.g. listen action or pay action) and the value
of a set of relevant properties (e.g. the author of
the track or the amount of money);

• deadline and expiration date are relevant instant
of time. The expiration date is the instant of time
when a conditional deontic relation ceases to ex-
ist. The deadline is the instant of time before
which it is obligatory to satisfy the content of an
active obligation, or it is permitted to exercise a
valid permission, or the instant of time when an
existing and in force prohibition is terminated.
Deadlines and expiration dates may be computed
at run-time by using a specified interval of time.
In those cases their value depends on when the de-
ontic relation has changed its deontic state. When
the deadline and the expiration date of a deon-
tic relation are fixed (i.e. they are not computed
at run-time) the expiration date must be before or
equal the deadline, this because the deontic re-
lation should not become active (or valid or in
force) when the deadline is already expired;

• counter is used for managing the obligations and
permissions to perform an action more than once.

A deontic relation is formalized in our Normative
Language Ontology as an individual of the DeonRela-
tion class. The type attribute is expressed introducing
the Permission, Prohibition, and Obligation subclasses
of the DeonRelation class. The other properties are ex-
pressed by introducing in the OWL ontology specific
object properties, like for example the hasActCondi-
tion or hasContent properties. The complete Norma-
tive Language Ontology is depicted in Figure 110. The
DeonState and ComponentState classes have been in-
troduced for representing the state of a deontic rela-
tion and the state of its components (i.e. the activation
condition and the regulated content) as discussed in the
next section.

In the definition of the Normative Language Ontol-
ogy we exploit the possibility, given by the adoption
of Semantic Web Languages, to import in our ontol-

10The name of the classes and properties in Figure 1 are prefixed
with the name of the specific ontology where they are defined as
discussed below. The nl prefix is used for the Normative Language
Ontology. The arrows with the black tip are used to represent the
subclass relationship, and the arrows with the thin tip are used to
represent OWL object and data properties.

ogy other quite well known and already existing on-
tologies. We import the ODRL 2.2 ontology because
we extend it by defining a new subclass of the ODRL
Rule class11. We import the core model of temporal en-
tities specified in the OWL Time Ontology12 for being
able to specify deadline and expiration dates, and the
time when specific events or actions happen. We im-
port the Schema.org vocabularies13, a shared vocabu-
lary developed to support web search engines. We use
it for the specification of actions as complex objects,
contrary to their treatment in ODRL, where they are
represented by atomic symbols. Finally, the Normative
Language Ontology uses the Event Ontology presented
in [4] for expressing events as a super-class of actions
and for connecting events to time instants and inter-
vals. The various import relationships defined among
those ontologies are depicted in Figure 2.

2.1. Policies examples

In a real system, it is desirable that digital assets are
associated with a policy schema that can be re-used in
different circumstances, for example the schema of a
contract or of an agreement. Policy schemas may con-
tain variables, for example the price of the negotiated
product may change from one contract to another, or
they may be related to classes of objects, for exam-
ple one schema of a contract may be applied to ev-
ery agent playing a certain role. Policy schema may be
transformed into policy instances through a procedure
of substitution of variables with actual values specified
during an interaction with a user or through a proce-
dure of substitution of the name of a class with specific
individuals belonging to that class.

Given that the ODRL policy language can only be
used for expressing policy instances, in the extension
of the ODRL model presented in this paper, our focus
is, similarly, on the formalization of specific policies.
The primary aim of the ODRL model is to “cover as
many permission, prohibition, and obligation use cases
as possible, while keeping the policy modelling easy
even when dealing with complex cases”. ODRL was
specified considering 27 use cases14, for example the
specification of common licenses (e.g. the RDFLicense

11This procedure is consistent with the one specified in the
“ODRL profile mechanism” section of the ODRL Information
Model 2.2.

12https://www.w3.org/TR/owl-time/ W3C Recommendation 19
October 2017

13http://schema.org/docs/developers.html
14http://w3c.github.io/poe/ucr/

https://www.w3.org/TR/owl-time/
http://schema.org/docs/developers.html
http://w3c.github.io/poe/ucr/
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time:TemporalEntity

time:Interval time:Instant

event:Eventuality
event:atTime

schema:Action

event:Event

schema:TradeAction

schema:PayAction

schema:ConsumeAction

schema:ListenActionodrl:Policy odrl:Rule

odrl:Asset odrl:Party

odrl:obligation
odrl:permission
odrl:prohibion

nl:DeonRelation

odrl:target odrl:assigner
odrl:assignee

nl:Prohibitionnl:Obligationnl:Permission

nl:UnlPermission

nl:suspendedBy

nl:hasDeadline
nl:hasDeadlineDelta
nl:hasExpiration
nl:hasExpirationDelta

nl:EventType

nl:ActionType

nl:isRealisedBy

nl:hasContent

nl:hasActCondition

nl:ComponentState

nl:hasState

nl:DeonState

nl:hasDeonState

xsd:dateTimeStamp

time:inXSDDateTimeStamp

xsd:duration

time:hasXSDDuration

xsd:nonNegativeInteger

nl:counter

nl:hasDateTimeCreation
nl:hasDateTimeActivation

schema:TransferAction

schema:ReceiveAction

nl:debtor
nl:creditor

Fig. 1. The OWL Normative Language Ontology and its connections with other imported ontologies

OWL Time OntologyEvent Ontology

Normative Language 
Ontology

Schema.org Ontology

import

import

import

ODRL 2.2 Ontology
import

Fig. 2. The import relationship among the various ontologies

dataset contains over 100 licenses written in RDF by
using ODRL 2.0 [7]) or of access policies to digital
resources.

The expressive power of the model of deontic rela-
tions presented in this paper is not substantially dif-
ferent from the expressive power of ODRL 2.2. This
because in both models it is possible to express the
parties involved in the deontic relation and some con-
ditions/refinements on the regulated action. Using the
ODRL model it is possible to express some conditions
(i.e. constraints) that have to be satisfied for obliga-
tions and prohibitions (or duties for permissions). Dif-
ferently, in the model presented in this paper the notion
of activation condition is introduced. In ODRL dead-
lines and expiration dates are simply expressed using
temporal constrains and are not part of the application
independent model. In addition in ODRL it is also pos-
sible to express constrains with the less than or greater
than operator and the consequences of not fulfilling an
obligation or the remedy for exercising a prohibited ac-

tion. In our future works, we plan to extend the pro-
posed model in order to be able to express and man-
age sanctions for the violation of deontic relations. The
substantial difference between the two models is not in
their expressive power, but on the fact that by inserting
in the application independent model the notion of ac-
tivation condition, deadline and expiration date we are
able to propose an application independent operational
semantics for our deontic relations as will be discussed
in next sections.

Due to space limitations, in this section we present
only one example of a conditional obligation and one
example of a prohibition that can be suspended by a
permission. One example of conditional obligation that
may appear in an agreement is “the obligation for Bob
to pay (within 5 minutes) the organization Zally 15
euro when a specific book is delivered at his home”. It
can be formalized as a tuple as:
〈obligation, Bob, Zally, ReceiveAction(Bob, Zally,
Book(Semantic Web)), PayAction(Bob,Zally,15euro),
5m, 2029-01-01, 1〉

It can be formalized as a set of RDF statements, i.e.
a collection of triples, each consisting of a subject, a
predicate and an object, and expressed in the textual
syntax for RDF called Turtle15 as follows:

15https://www.w3.org/TR/turtle/, in Turtle every row is an RDF
triple terminated by ’.’. The ’;’ symbol is used to repeat the same
subject for different triples. Square brackets, ’[’...’]’, are used for
unlabelled blank nodes.

https://www.w3.org/TR/turtle/
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policy01 rdf:type odrl:Agreement;
odrl:obligation obl01.

obl01 rdf:type nl:Obligation;
nl:debtor Bob;
nl:creditor Zally;
nl:hasDeadlineDelta [time:hasXSDDuration

"P0DT0H5M"^^xsd:duration];
nl:hasExpiration [time:inXSDDateTimeStamp

"2029-01-01T00:00:00Z"^^xsd:dateTime];
nl:counter 1;
nl:hasActCondition [

rdf:type schema:ReceiveAction;
schema:agent Bob;
schema:sender Zally;
schema:object [

rdf:type schema:Book;
schema:headline Semantic Web]];

nl:hasContent [
rdf:type schema:PayAction;
schema:agent Bob;
schema:recipient Zally;
schema:price 15.00;
schema:priceCurrency "euro"].

One example of prohibition is the “prohibition for
Bob, with respect to Soyn, to listen a song by Beatles
until the end of 2020”. Such a prohibition may be sus-
pended by a “conditional permit allowing Bob, until
the end of 2019, to listen to, at most ten times, a song
by Beatles, in the 48 hours following the payment of 5
euro to Soyn”. Those deontic relations can be formal-
ized as tuples as:
〈prohibition, Bob, Soyn, -, ListenAction(Bob,
MusicRecording(Beatles)), 2020/12/31, -, - 〉
〈permission, Soyn, Bob, PayAction(Bob,Soyn,5euro),
ListenAction(Bob,MusicRecording(Beatles)), 48h,
2019/12/31, 10 〉

They can be formalized as one prohibition and one
permission belonging to an agreement by using the
Normative Language Ontology. The resulting formal-
ization as RDF statements is as follows:

policy02 rdf:type odrl:Agreement;
odrl:prohibition proh02;
odrl:permission perm02.

proh02 rdf:type nl:Prohibition;
nl:debtor Bob;
nl:creditor Soyn;
nl:suspendedBy perm02;
nl:hasDeadline [ time:inXSDDateTimeStamp

"2020-12-31T23:59:59Z"^^xsd:dateTime];
nl:hasContent [

rdf:type schema:ListenAction;
schema:agent Bob;
schema:object [

rdf:type schema:MusicRecording;

schema:byArtist Beatles]].

perm02 rdf:type nl:Permission;
nl:debtor Soyn;
nl:creditor Bob;
nl:hasDeadlineDelta [time:hasXSDDuration

"PT48H0M0S"^^xsd:duration];
nl:hasExpiration [time:inXSDDateTimeStamp

"2019-12-31T09:00:00Z"^^xsd:dateTime];
nl:counter 10^^xsd:integer.
nl:hasActCondition [
rdf:type schema:PayAction;
schema:agent Bob;
schema:recipient Soyn;
schema:price 5.00;
schema:priceCurrency "euro"].

nl:hasContent [
rdf:type schema:ListenAction;
schema:agent Bob;
schema:object [
rdf:type schema:MusicRecording;
schema:byArtist Beatles]].

3. Dynamic evolution of Obligation, Prohibition,
and Permission

ODRL 2.2 has not a formal semantics. The intuitive
meaning of its notion of duty, prohibition, and permis-
sion is provided only in English. The lack of a formal
semantics makes it hard to develop a framework for
automatically monitoring or simulating the time evolu-
tion of a set of deontic relation instances. For example,
it would be hard to automatically evaluate if a given
action, for example inserting an image in a presenta-
tion for a conference, will bring to the violation of a
specific prohibition or if this action will activate a spe-
cific obligation. Being able to automatically detect, or
simulate for a what if analysis, violations of deontic re-
lation instances, by taking into account the specific ac-
tions performed by the agents, is a useful service that
is getting more and more strategic in nowadays digital
scenario.

Our goal, in this section, is to present, in an un-
ambiguous way, what it means for an agent to have
a specific obligation, or prohibition, or permission ex-
pressed using the deontic model introduced in the pre-
vious section. As we already discussed, deontic rela-
tions are widely used for regulating the actions that
various individuals should, should not, or may per-
form. The performance of actions, and more generally
the happening of events (i.e. something that happens in
a system, but is not necessarily done by an actor like
for example a time event) may change the state of the
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interaction among various parties and the state of their
deontic relations. In particular, the sate of a deontic re-
lation will change in different ways based on the in-
stant of time when events happen. In order to unam-
biguously specify what it means for an agent to have
an obligation, a prohibition, or a permission, it is there-
fore fundamental to model the deontic state of deontic
relations, and to unambiguously specify how it evolves
in time, when temporal events happen (e.g. the expira-
tion of a deadline) and actions are performed (e.g. an
agent listen a song).

Similarly to what has been done for the notion of
commitment in [8] and of norm in [6], the dynamic
evolution in time of the deontic state of deontic rela-
tions, i.e. their life cycle, can be clearly illustrated us-
ing State Machines. The proposed dynamic evolution
of the deontic state of the three different types of deon-
tic relations is the result of a deep analysis of the litera-
ture (as discussed in 6) on deontic logic and normative
systems combined with the textual description of the
notion of permission, prohibition, and duty presented
in the ODRL Information Model 2.2. It is important to
underline that we are able to propose an application in-
dependent life cycle for every type of deontic relation
thanks to the changes introduced in their model.

It is important to underline that the proposed dy-
namic evolution of the deontic state of obligations,
prohibitions, and permissions in turn depends on the
satisfaction or not of their activation condition and of
the action described in the content. Such a satisfaction
can be computed by a specific procedure, described in
the next section, consisting in checking if the represen-
tation of a specific event happening in the system re-
alises an event type specified in the condition or con-
tent of deontic relations. We introduce in the Norma-
tive Language Ontology the hasState property for con-
necting the activation condition or content component
with its state. Such a state is initially unsatisfied and
becomes satisfied when a successful realisation is de-
tected. The isRealisedBy property is used to connect
the description of an event/action type, in a deontic re-
lation, with a specific happened event.

We will now introduce the life cycles of our model
of obligation, permission, and prohibition, which are
depicted using State Machines. The life cycle of a con-
ditional obligation to perform an action a certain num-
ber of times is depicted in Figure 3, where the black
dot is the starting state and the states with the double
outline are a final states. When a conditional obligation
is created by a creation event and its activation con-
dition and content components are unsatisfied, it goes

in the conditional state. The action of creating a deon-
tic relation and the action of cancelling it are institu-
tional actions [9] and their actor needs to have the in-
stitutional power to successfully perform them [10]16.
For example, the creditor of an active obligation may
have the power to cancel it. If an activating event of
a conditional deontic relation happens (i.e. the activa-
tion condition becomes satisfied) the deontic relation
gets active. Differently, if the cancellation event of a
conditional deontic relation happens the deontic rela-
tion becomes cancelled. In the model presented in this
paper, the cancellation event happens when the expira-
tion date of the deontic relation is elapsed. In a future
improvement of the model, other types of cancellation
events may be introduced. When an obligation is in
the active state, if the regulated event happens (i.e. the
content component becomes satisfied) and the counter
is greater than one, the conditional obligation remains
active, the counter is decremented, and the content is
set back to unsatisfied. If the regulated event of an ac-
tive obligation happens and the counter is equal to one
the deontic state becomes the final fulfilled state. Dif-
ferently, if the state is still active and the termination
event happens, i.e. the deadline becomes elapsed, the
deontic state becomes the final violated state and the
obligation cannot be fulfilled anymore. If the final state
is violated a sanction may be applied [11], similarly if
the final state is fulfilled a reward may be given.

The notion of permission has been widely discussed
in the literature and different types of permission have
been detected. One first traditional distinction is be-
tween weak (or negative) and strong permission [12].
A weak permission of doing an action a in a given code
is equivalent to the absence of the prohibition to do a
in that code, i.e. in a logic formalism, it is not provable
that ¬a is mandatory [13]. Differently, a strong permis-
sion is given in a code when there is the explicit per-
mission do to an action a and usually they are used to
explicitly derogate to existing prohibitions. Strong per-
mission makes sense even when there is not an incom-
patible prohibition, but the permission may be used
for preventing the creation of future prohibitions [13].
Sometime a strong permission may be used to create
an exemption to an obligation. Finally, in some scenar-
ios, for example in a P2P data exchange scenario, the
notion of strong permission may be related to the no-
tion of obligation. In fact, having a permission, for ex-

16A complete formalization of the notion of institutional power is
beyond the scope of this article and we plan to investigate it in our
future works.
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conditional active

creation
event

activating event 

cancelled

cancellation
event

fulfilled

violated

regulated event
and counter=1

termination 
event

cancellation
event

regulated event
and counter>1

Fig. 3. Life cycle of Conditional Obligation

ample to get access to certain data, may coincide with
the obligation for the debtor of the permission to en-
able the holder of the permission to exercise it [14].
Given that in this paper our focus is on the deontic rela-
tions formalized in ODRL 2.2 and on the examples dis-
cussed in that specification, we will propose a model
of the notion of strong permission used for explicitly
derogating to existing prohibitions.

Our assumption in this paper is that a strong permis-
sion may be created only by an agent having the insti-
tutional power to successfully perform it. The life cy-
cle of a conditional permission to perform an action a
certain number of times is depicted in Figure 4. It is
interesting to notice that the conditions that trigger the
transitions of the obligation and permission life cycles
are identical. The fundamental difference between the
two life cycles, which is enlightened by the different
name of the deontic states, is that for obligations the
fulfilled state is a final and desired state, contrary to the
violated final state which may bring about a sanction.
Differently, for permissions the exercised or expired fi-
nal states have no positive or negative connotation. The
positive and negative connotation can be found again
in the life cycle of prohibitions as discussed below.

By using a Finite State Machine it is also possible
to formalize the life cycle of a conditional permission
to perform an action for an unlimited number of times.
It is a machine similar to the one depicted in Figure
4 with the difference that there is not a counter to be
decreased whenever the permission is used and there is
not the exercised state, in fact only when the deadline
is elapsed the permission becomes expired.

The last fundamental deontic relation, which is part
of the ODRL 2.2 model, is the notion of prohibition.

As previously discussed, in those cases when a permis-
sion is used for suspending a prohibition those two de-
ontic relations should be connected, and we connect
them in the Normative Language Ontology using the
suspendedBy property. We assume that when a per-
mission that regulates a prohibited action is created,
the connection between the permission and the prohi-
bition is automatically initialized. We have not mod-
elled a prohibition as an obligation not to perform the
regulated action, as it is usual in deontic logic, because
in RDF there is not a standard way to represent the
negation of an action and its time constraints. The life
cycle of a conditional prohibition to perform a certain
action is depicted in Figure 5. The condition that trig-
gers the transition from conditional to inForce and then
from inForce to cancelled, infringed, and notInfringed
are the same conditions described for the obligation
and for the permission state machines (except for the
management of the counter). When a permission con-
nected with an inForce prohibition becomes valid the
prohibition goes to the suspended state. When such an
active permission goes to a final, exercised or expired,
state the prohibition goes back to the inForce state.

It is interesting to observe that the prohibition life
cycle differs from the others for the name of the states.
Another crucial difference is that the final state that
brings to a violation for an obligation (i.e. the violated
state) is not the corresponding state that brings to a vi-
olation for a prohibition (i.e. the infringed state). An-
other interesting novelty is the introduction of the sus-
pended state in the prohibition life cycle. We think that
that such a difference may be explained in the follow-
ing way. In this paper, we focused on three deontic con-
cepts: obligation, permission, and prohibition. If we
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Fig. 4. Life cycle of Conditional Permission

conditional inForce

creation
event

activating event 

cancellation
event

infringed

notInfringed

regulated event

termination 
event

cancellation
event

suspended

permission 
becomes valid

permission becomes
exercised or expired

cancelled

Fig. 5. Life cycle of Conditional Prohibition

will extend our treatment to other concepts, like for
example the notion of exemption, used for suspending
an obligation, the obligation and the prohibition ma-
chine will become quite similar. We can observe that
the states that all these three machines have in common
(except for their name) are the states whose conditions
are triggered by internal properties of the deontic re-
lation. Differently, the suspended state (that in Figure
5 is separated from the other states by a dashed line)
is a state that is reached when some conditions on the
deontic state of another deontic relation are satisfied.
Given that a deontic relation creates deontic connec-
tion between two parties, we can see it as a first level
connection, therefore the connection between two de-
ontic relations can be seen as a second level connec-
tion. Therefore, we can conclude that the suspended
state appears only in the prohibition life cycle because

in the model presented in this paper we decided to rep-
resent only one second level relation among deontic
concepts. These observations lead us to think about the
possibility to define only one state machine for all these
three types of deontic relations, we will investigate this
improvement in our future works.

4. Operational Semantics

In order to realize services able to automatically
monitor or simulate the dynamic evolution of the pro-
posed deontic relations, it is necessary to define a pro-
cedure for automatically computing their deontic state
on the basis of the life cycles introduced in the previous
section. This by taking into account that such a deontic
state, in turn, depends on the satisfaction of the state
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of the activation condition and content of the relevant
deontic relations.

Such a procedure can be realized, with a modular ar-
chitecture, by combining three different components.
The first one that we can call “sense and reason”, is an
application-dependent component, able to: (i) “sense”
the actual events or actions that happens in the inter-
action among agents; (ii) represent them as individu-
als of the OWL State Ontology where events, actions,
and the instants of time when they happen are rep-
resented using the vocabulary defined in the Event,
Schema.org, and OWL Time ontologies; (iii) given that
OWL is a practical realization of the SROIQ(D) De-
scription Logic (which is sound and complete), “rea-
son” on the State Ontology by using one of the avail-
able OWL reasoners. We are then able to exploit our
choice of using sematic web technologies for deriving
all the entailed assertions. For example given that the
PayCash class is a subclass of the PayAction class, it
is possible to deduce that if a certain payment belong
to the PayCash class it belongs also to the PayAction
class.

The other two application-independent components
are: the component for computing the satisfaction of
the state of the condition and content of deontic rela-
tion; and the component for computing the dynamic
evolution of the deontic state. In this paper we propose
to realize both of them using a production system [15],
i.e. a forward-chaining reasoning system that uses pro-
duction rules for reasoning and draw conclusions from
facts store in an ongoing memory. A production rule
has two parts: a set of conditions, to be tested on the
ongoing memory, and a set of actions, whose execution
has an effect on the content of the ongoing memory.
The generic form of a production rule is:

IF conditions THEN actions

Production rules may be used to generate an event-
based computation, which can carry out an infer-
ence process or implement a discrete dynamic system.
We will exploit the latter use of production rules for
proposing an operation model of the life cycles of obli-
gations, permissions, and prohibitions introduced in
the previous section. A crucial advantage of using pro-
duction rules is the possibility to represent the logic
of the dynamic evolution of the proposed deontic re-
lations using a declarative paradigm, where rules can
be easily modified, instead of embedding such a logic
in the code written in an imperative programming lan-
guage.

The ongoing memory of the proposed production
system contains the RDF statements inserted in the
State Ontology, which is a representation of the state
of the interaction among agents in terms of actual ac-
tions, events, and current time. The ongoing memory
contains also the RDF statements representing the set
of policies of a specific normative system (for exam-
ple the policies reported in Section 2.1) which are ex-
pressed using the OWL Normative Language ontology.
While time flows, the ongoing memory is continuously
updated with new assertions representing actual events
or actions and the elapsing of time, and it is updated
due to the execution of those production rules having
all conditions satisfied.

Production rules must be written in a formal lan-
guage in order for computer programs to reason with
them using a rule engine. There are many rule lan-
guages having different syntax for the various exist-
ing rules engines (for example the rule language for
Drools, Oracle Business Rules, Jess, or Jena). The
abundance of different rule languages can create dif-
ficulties in integrating rule sets. The W3C Rule Inter-
change Format (RIF) 17 is a standard developed to fa-
cilitate rule sets integration. In order to avoid to bind
the production rules presented in this section to a spe-
cific rule engine we will formalize the them using the
Abstract Syntax of the W3C Recommendation RIF
Production Rule Dialect18 (RIF PRD). In this language
the conditions of the production rules (that have to be
evaluated on facts written as RDF statements, having
a subject a predicate (or RDF property) and an object)
are written as binary relations (i.e. the name of the re-
lation is the name of the RDF property) over the sub-
ject and object of RDF triples. In RIF-PRD variables
are prefixed by ’?’.

In the proposed production system, there are two dif-
ferent types of production rules. One type of rules are
used for computing the satisfaction of activation condi-
tions and content component of deontic relations. The
second type of rules are used for computing the deon-
tic state of obligations, permissions, and prohibitions
based on their life cycle.

4.1. First type of production rules

The first type of production rules is used for eval-
uating if the description of an event or action type

17https://www.w3.org/TR/rif-overview/
18https://www.w3.org/TR/rif-prd/,http://www.w3.org/TR/

rif-primer/

https://www.w3.org/TR/rif-overview/
https://www.w3.org/TR/rif-prd/, http://www.w3.org/TR/rif-primer/
https://www.w3.org/TR/rif-prd/, http://www.w3.org/TR/rif-primer/
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(which appears in the activation condition or content
of a deontic relation) is realised by a specific event in-
stance as soon as it is represented in the system. In the
meta-model of obligations, permissions, and prohibi-
tions proposed in this paper, a description of an event
type (or an action type) is characterized by the speci-
fication of its class and by a list of relevant property-
values pairs. The satisfaction of one event type can be
computed by one production rule by checking the exact
match between the described event type and the avail-
able event instances, this by taking into account also
some time constraints on the instant of time when such
event instances happened. Given that the list of proper-
ties used for describing an event or an action type can
change from one deontic relation to another, we need to
specify one production rule for every description of an
event or action type. This solution is due to the choice,
in line with ODRL, of formalizing policies, and there-
fore their event types, using the RDF language. In our
future works we plan to study the possibility to express
our policies using the OWL language and then exploit
OWL reasoners for computing if an event type (i.e. an
OWL class) is realized by a specific event instance (i.e.
an OWL individual).

Due to space limitation, we report here only one ex-
ample of this type of production rules. It is the rule
used for computing if the event type of listening a song
by Beatles, which is used in the content component of
the prohibition and permission reported in Section 2.1,
is realized by one of the event instances contained in
the State Ontology19.

(* ListenActionContent *)
Forall ?deon ?component ?agent ?object

?objectClass ?artist ?realEvent ?instant
?dateTime ?object1 ?datetimeAct(

If And(
rdf:type(?deon nl:DeonRelation)
nl:hasContent(?deon ?component)
nl:hasDeonState(?deon nl:active)
nl:hasState(?component nl:unSatisfied)

rdf:type(?component schema:ListenAction)
schema:agent(?component ?agent)
schema:object(?component ?object)
rdf:type(?object ?objectClass)
schema:byArtist(?object ?artist)
rdf:type(?realEvent schema:ListenAction)
event:atTime(?realEvent ?instant)
time:inDateTime(?instant ?dateTime)

19We assume that it is impossible to insert in the State Ontology
an event that will happen in the future, therefore, as soon as an event
instance is represented in the ontology, it can be considered the real-
ization of one event type.

schema:agent(?realEvent ?agent)
schema:object(?realEvent ?object1)
schema:type(?object1 ?objectClass)
schema:byArtist(?object1 ?artist)

nl:hasDateTimeActivation(
?deon ?datetimeAct),

External(pred:numeric-greater-than(
?dateTime,?datetimeAct)))

Then(
Assert
(nl:hasState(?component nl:satisfied))

Assert
(nl:isRealizedBy(?component ?realEvent))

Retract
(nl:hasState(?component nl:unSatisfied)))

The last two conditions of the rule are used to check
if the action instance that realizes the action type, de-
scribed in the content of a deontic relation, is happened
after the activation of the deontic relation. This check
is required in order to avoid that action instances hap-
pening before the activation of the deontic relation may
erroneously satisfy the conditions of the rule.

4.2. Second type of production rules

The second type of production rules is used for com-
puting the deontic state of obligations, permissions,
and prohibitions coherently with their life cycle. It is
necessary to define one production rule for every tran-
sition of the life cycles presented in Section 3. The con-
ditions of these production rules are used for testing
the type of the deontic relation (obligation, permission,
or prohibition), its current deontic state, and the condi-
tions that appear on the transition of the life cycle. The
action component of the rules is used to retract the cur-
rent deontic state, assert the new one and, if necessary,
decrement the counter.

Due to space limitation, we report here only two pro-
duction rules. The first one is used for computing the
transition from the conditional to the valid state in the
life cycle of permissions.

(* validatePermission *)
Forall ?perm ?activation ?now (
If And( rdf:type(?perm nl:Permission)
nl:hasDeonState(?perm nl:conditional)
nl:hasActCond(?perm ?activation)
nl:hasState(?activation nl:satisfied)
time:inDateTime(currentTime ?now) ))
Then(
Assert
(nl:hasDeonState(?perm nl:valid))
Assert
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(nl:hasDateTimeActivation(?perm ?now))
Retract
(nl:hasDeonState(?perm nl:conditional))
)

When the state of a permission becomes valid, an-
other rule is in charge of computing at runtime the
deadline value for those cases when it depends on the
time of the activation of the permission (e.g. the per-
mission to listen a song for two days starting from the
time of the payment that activated it). The second rule
is as follows.

(* suspendProhibition *)
Forall ?proh ?permission ?dateTime(
If And(
rdf:type(?proh nl:Prohibition)
nl:hasDeonState(?proh nl:inForce)
nl:suspendedBy(?proh ?permission)
nl:hasDeonState(?permission nl:active)
nl:hasDateTimeActivation(?proh ?dateTime)
))
Then(
Assert
(nl:hasDeonState(?proh nl:suspended))
Retract
(nl:hasDeonState(?proh nl:inForce))
Retract
(nl:hasDateTimeActivation(?proh ?dateTime)
))

This rules computes the transition from the inForce
to the suspended state in the life cycle of prohibitions.
The instant of time when the prohibition became in-
Force (i.e. when its activation condition was satisfied)
is retracted by the last action of the rule. Such an in-
stant of time will be initialized again by the produc-
tion rule that computes the transition from suspended
to inForce.

5. Implementation of a Java Prototype

For testing our proposal, we have developed a Java
prototype, specifically a system able to simulate the
evolution of policies containing a set of obligations,
permissions, and prohibitions. We use Apache Jena20,
a free and open source Java framework for building se-
mantic web applications. For the implementation of the
production system, described in Section 4, we use the
Jena general-purpose rule engine and a translation of
the RIF PRD rules into Jena Rules21. Differently from

20https://jena.apache.org/
21https://jena.apache.org/documentation/inference/#rules

other forward rule-based systems, this reasoner na-
tively supports rule-based inference over RDF graphs,
and provides forward chaining realized by means of an
internal RETE-based forward chaining interpreter[16].
The main advantage of using the JENA interpreter with
respect to other Java compatible production rules inter-
preters, like for instance the Jess engine inspired by the
open-source CLIPS project, is its direct compatibility
with RDF data [17].

In general, a forward-chaining reasoner of a produc-
tion system allows data processing through cycles of
three stages: matching rules-facts, selection of satisfied
rules, and execution of rules. In the first stage reasoner
finds all the rules whose condition part is satisfied by
the facts contained in the ongoing memory. A positive
matching leads to the activation of a rule that is in-
serted in an agenda. In each iteration, an activation in
the agenda is chosen and then executed (fired). After
the execution of a rule, the facts contained in the ongo-
ing memory are updated as specified in its action part,
then a new reasoning iteration starts until no rules can
be activated with updated facts.

An interesting feature of the Jena forward chain-
ing interpreter is that it works incrementally, mean-
ing that if the ongoing memory is modified by adding
or removing statements, the production/reasoning pro-
cess automatically resumes, potentially producing the
activation of new rules. The efficiency of the reason-
ing with respect to these incremental changes is guar-
anteed by the use of the RETE algorithm, through
which matching tests are performed only for those
rules whose conditions include an updated fact in the
previous iteration.

In our prototype, the RIF PRD external built-in op-
erations of Retract() and Assert() are realized by means
of the default Jena built-in remove(n) and the ad-hoc
realized add(triple) built-in. The remove(n) Jena built-
in has the side effect of recursively retracting, from the
inference model, the consequences of the already fired
rules, if their conditions matched with the removed
statement. In fact, coherently with its main goal of im-
plementing logical reasoning in RDF and OWL, the
Jena interpreter is designed to have a monotonic be-
haviour. Given that our productions rules are meant to
implement State Machines (and not monotonic logi-
cal reasoning), we implemented the ad-hoc add(triple)
built-in, having the effect of inserting a new triple that
will not be retracted as a side effect of removing an-
other statement.

As we already discussed in the introduction, one
useful service that can be provided in relation to a set

https://jena.apache.org/
https://jena.apache.org/documentation/inference/#rules
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of policies is the monitoring of their deontic state for
those applications where it is crucial to check the ful-
filment or violation of obligations, the observance of
a prohibitions, or the correct use of permissions. An-
other relevant service is the simulation of the evolu-
tion of deontic relations based on a set of hypothetical
actions. In order to realize these services it is impor-
tant to take into account that a few relevant instants are
truly significant in the life cycle of an obligation, a per-
mission, or a prohibition. Significant instants are the
instants when real actions and events happen and the
elapsing of deadline and expiration dates. Therefore,
in order to realize an efficient simulator22 it is impor-
tant that the comparison between the simulated current
time and the significant instants (stored in an ordered
list) occurs only if strictly necessary, i.e. when one of
these relevant instants are reached. This is obtained by
forcing the current time to evolve to the nearest rele-
vant instant of time. Each update of the current time in
the inference model leads to a new cycle of the inter-
preter, during which the states of obligations, permis-
sions, and prohibitions eventually evolve.

6. Related Work

Studies on Normative Multiagent Systems (Nor-
MAS) [18] concern mainly the proposals of for-
malisms for expressing norms or policies contain-
ing mainly obligations, permissions, and prohibitions.
Those studies investigate the realization of fundamen-
tal functionalities on those norms/policies, for exam-
ple promulgation, monitoring and enforcement, simu-
lation, consistency check, as well as norm adoption and
reasoning.

In the literature, there are various proposals where
a model of norms and policies is proposed using dif-
ferent formal languages and where different frame-
works are investigated with the goal of providing dif-
ferent services on policies. The most well-known are
the studies on Deontic Logic [19], a family of logi-
cal systems where the essential features of obligations,
prohibitions and related concepts are captured. Exam-
ples of other formal languages, sometime used together
with various reasoning techniques, are: the UML nota-
tion adopted in [20]; the Jess rule language adopted in
[21]; the RuleML language used in the LegalRuleML
language23, which is in the process of becoming an

22Taking into account that the monitoring service can be realized
using the simulator where time and events are real.

23https://www.oasis-open.org/committees/legalruleml/

OASIS standard in the legal domain; the OWL se-
mantic web language exploited in [4, 5, 22, 23]; the
RDF+RDF Schema language used for the specification
of ODRL 2.2 and for the proposal in [3], the deontic
logic and the linear temporal logic together with pro-
duction systems as discussed in [6]; defeasible logic on
propositional atoms analysed in [24]; the Ans−Prolog
language (a logic programming language under the an-
swer set semantics) used in InstAL [25]; or tuples de-
fined in a set theory like in [14].

Many of those approaches have in common the idea,
supported also in this paper but disregarded by ODRL,
that it is crucial to represent in the model of norms
their activation and deactivation or expiration condi-
tion [5, 6, 14, 20]. An idea that is shared also by papers
where the notion of commitment, which is really close
to the notion of obligation, is modelled [23, 26]. Even
if, in few of those approaches there is the possibil-
ity to express those activation conditions and the regu-
lated actions using a complex model of actions (easily
sharable with other applications) like it is done in this
paper. Those approaches share also the idea that deon-
tic relations can be used for regulating the performance
of an action or for regulating the maintenance of cer-
tain conditions or, of a certain state of affairs. Differ-
ently from what we proposed in this paper, only few of
the mentioned approaches investigate the relation be-
tween deontic relations and relevant instant of time like
the deadline and the expiration date, moreover few of
them study the dynamic evolution in time of deontic
relation instances.

An interesting proposal where an extension of De-
feasible Logic (a non-monotonic logic) is proposed
for reasoning about obligations, prohibitions, and per-
missions in force in a given license, and on the com-
position of different licenses is presented in [24]. In
this paper different licenses (having as content obliga-
tions, permissions, and prohibitions) for Linked Open
Data are formalized in a machine-readable format us-
ing the L4LOD (Licenses for Linked Open Data) vo-
cabulary. L4LOD is a vocabulary devised for express-
ing with one language various licenses languages, like
for example the Creative Common licenses or the Open
Government License (OGL). The proposed logic al-
lows dealing with permissions as defeaters of prohibi-
tions and on prohibitions understood as negative obli-
gations. The actions that are regulated are those typical
of linked open data licences, like ShareAlike, Attribu-
tion, Commercial and so on, which are represented as
atomic symbols. There is not a representation of time
but the focus of the paper is on reasoning on licenses

https://www.oasis-open.org/committees/legalruleml/
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composition, i.e. understanding what actions are per-
mitted, prohibited, or obliged when two or more li-
cences are combined together. Differently in this paper,
the focus is not on reasoning on the deontic aspects of a
set of policies, but it is on monitoring or simulating the
dynamic evolution in time of policies instances in order
to detect any misbehaviour of the involved agents. This
is an interesting service when the regulated actions are
characterized by a complex action type, by some value
of their properties and by some time constraints. When
the regulated actions are simply propositions that may
be true or false is less interesting.

The model presented in [6] shares with the model
presented in this paper the idea of representing the life
cycle of norm instances with a state machine. Even
if, given that the model of norms are different, in [6]
there is only one state machine for all deontic relations
and such a state machine is substantially different from
the three machines presented in this paper. In particu-
lar, in [6] a norm instance is used for expressing the
obligation to keep a maintenance condition, and if at
some point the maintenance condition is not fulfilled
the norm gets into a violation state. When the obli-
gation has as maintenance condition a negated action,
like for example “do not cross in red light when driv-
ing” it becomes a prohibition. Alternatively, the model
presented in this paper avoids the problem of treating
negated action and can be used for regulating the per-
formance of actions instead of maintenance conditions.
Differently from our model, where deadlines and expi-
ration dates are modelled, in [6] only a timeout prop-
erty, i.e. a deadline for the reparation of the violation
of a norm, is taken into account. Another difference is
that in [6] the deontic interpretation of a norm is re-
duced to a temporal logic formulae written in Linear
Temporal Logic (LTL) which in turn can be translated
into both rule-based and planning operational seman-
tics, whereas in our approach an application indepen-
dent set of rules is used for computing the deontic state
of all policy instances.

Similarly in [21], a normative language for the spec-
ification of norms is presented. In such a normative
language norms have the form of preconditions →
postconditions, and the execution of every norm is im-
plemented by means of an ad-hoc forward rule writ-
ten for the Jess interpreter24. Differently in this paper,
we propose a production rule system for computing the
application-independent life cycle of policies contain-
ing three types of deontic relations.

24http://www.jessrules.com/

Given that, in this paper, policies are formalized us-
ing Semantic Web Technologies and their life cycle is
computed by using an OWL reasoner and production
rules, we will compare our approach with other papers
where Semantic Web Technologies are used. An inter-
esting literature review of various approaches to poli-
cies specification using Semantic Web Technologies is
given in [27].

In [4, 26] we presented our first approach to for-
malize obligations using OWL 2 with SWRL rules and
to reason on them using available OWL reasoners and
OWL-API. These papers present an OWL ontology of
obligations whose content is a class of possible actions
that have to be performed within a given deadline. The
monitoring of such obligations, checking if they active
and then fulfilled or violated on the basis of the ac-
tions performed by the agents, is realized by means of
a specific Java framework used for managing the elaps-
ing of time and for performing closed-world reasoning
on certain classes. This is necessary due to the open-
world assumption of OWL logic that creates a prob-
lem for successfully monitoring obligations, i.e. when
trying to deduce that when the deadline is elapsed an
active obligation has to be permanently violated. The
Java program was used for computing the explicit clo-
sure of certain classes used for representing the can-
cel and fulfilled states. Unfortunately, the scalability of
this approach was not good enough to make it usable
in real applications. Therefore, we started to look for
another approach for dynamically computing the state
of obligations and other deontic relations, and the so-
lution proposed in this paper consists in using produc-
tion rules for computing the life cycles expressed with
state machines.

In [28] a first attempt of expressing conditional
obligations to perform one action, as an extension of
ODRL 2.1 having a life cycle computed using Jena
Rules is presented. The work proposed in this paper
is a substantially revised version of the paper [29]. In
this new version, we added and discussed the model
of prohibitions with its interesting connection with the
dynamic evolution of permissions. Moreover, we in-
troduced the idea of running an OWL reasoner on the
State Ontology before to use it an input for the rule-
engine of the production system and we extended the
comparison with related works.

An interesting approach that uses Semantic Web
Technologies for policy formalization and manage-
ment is the OWL-POLAR framework [5]. This frame-
work investigates the possibility of using OWL on-
tologies for representing the state of the interaction

http://www.jessrules.com/
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among agents and SPARQL queries for reasoning on
policies activation, for anticipating possible conflicts
among policies, and for conflicts avoidance and resolu-
tion. In the OWL-POLAR model, the activation condi-
tion and the content of the policies are represented us-
ing conjunctive semantic formulas. Reasoning on a set
of policies for deducing their state is realized by trans-
lating the activation condition and the content of a pol-
icy into the SPARQL query language and then evaluat-
ing the resulting queries on the OWL ontology used for
representing the state of the world. In OWL-POLAR,
there is no treatment of time. We think that an advan-
tage of our approach, with respect to OWL-POLAR,
is the possibility to compute the operational semantics
of policies directly on their RDF formalization without
the need of translating them in other languages. An-
other advantage is in the use of production rules, i.e. a
declarative paradigm, for computing the dynamic evo-
lution of the proposed deontic relations instead of cod-
ing such a computation with an imperative program-
ming language.

Another relevant proposal is the KAoS policy man-
agement framework [22, 30]. In KAoS Semantic Web
technologies are used for policy specification and man-
agement, in particular policy monitoring and enforcing
is realized by a component that compiles OWL policies
into an efficient format. In [23] social commitments [8]
are used for modelling privacy requirements for social
networks formalized using OWL. Similarly to our ap-
proach, the antecedent of commitments is a description
of conditions that have to be matched with the content
of the ontology. However, the consequent of commit-
ments is limited to permissions or prohibitions to see a
set of posts, and time is not modelled at all.

In our future work, we plan to further investigate
the dynamic connections between obligations, permis-
sions, and prohibitions and other deontic relations like
the for example the exemption to an obligation and the
right to perform a permitted action. We intend to study
a mechanism for improving the procedure for checking
if an event instance realizes an event type described in
the deontic relations. We need also to further investi-
gate the possibility to use the event of violation or ful-
filment of an obligation or of a prohibition for applying
rewards or sanctions, and to extend our model with the
notion of institutional power.
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